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Abstract 

Geometric and computational approach based on the theory of Stretched Grid Method 
(SGM) has been developed for the minimal surfaces form finding. For example, SGM is 
advantageous for engineering problem solution relative to an arbitrary tensile fabric 
structures design in comparison with other approaches. The SGM fundamental properties 
concerning convergence of the method and applicability have been proved in this paper. The 
proof is based on the theorem about the first surface quadratic form behavior together with 
convergence to minimum surface area. An efficient computer procedure based on the 
approach described in this paper has been worked out. The procedure is included into CAD 
system aimed at tensile fabric structures designing. 

Keywords: Minimal surface, first surface quadratic form, Stretched Grid Method, 
Tensile fabric structure. 
 
 

1. Introduction  
The theory of minimal surfaces in three-dimensional Euclidean space has its roots in the 
calculus of variations developed by Euler and Lagrange in the XVIII century and in later 
investigations in XIX century by Enneper, Scherk, Schwarz, Riemann and Weierstrass. Since 
then, many great mathematicians have contributed a lot to this theory. Most of the activity in 
minimal surface theory in those days was focused almost exclusively on Plateau's problem [1-
2]. However, in most cases the Plateau's problem of analytic solution is impossible because of 
the lack of a surface analytic representation in the majority of cases. 
At the same time, the theory of minimal surfaces form finding is relevant for some 
architectural engineering problems solution. Since the middle of XX century, advanced types 
of structures have constituted an important research field in architecture and engineering. 
Amongst them are tensile fabric structures. They are light, elegant and effective structures, 
whose applications range from large stadium roofs and high-rise building walls to pneumatic 
furniture or aerospace equipment. Tensile fabric structures are characterized by profusion of 
possible equilibrated initial configurations, and, for this reason, it is difficult to define their 
geometric shape a priori. The design of a tensile fabric structure involves the determination of 
an initial equilibrated configuration or viable configuration, which encompasses the 
structure’s shape and the associated stress field. The viable configuration must accommodate 
both architectonic (form and function) and structural requirements (strength and stability). 
The design of tensile fabric structures is consequently integrated in their engineering 
analysis, in a process that includes procedures for shape finding, patterning and load 
analysis. The most common way to form finding of doubly curved fabric structures is to 
minimize their area because they naturally form a minimal surface—the surface with minimal 
area like a soap film. It is well known that a surface like a soap film has a uniform stress in 
every direction and low material consumption at the same time that are very attractive 
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properties for fabric structures. Therefore, the minimal surfaces form finding is a key concept 
in the design of tensile fabric structures in the majority of cases. 

2. Problem Formulation 
In practice, typical tensile structure surface is represented by a facet shell model in the form 
of a triangle mesh as it is shown in Fig. 1. In practice, the typical surface of the stretching 
structure is represented by a faceted shell model. 
 

 
Figure 1. Typical surface discrete model 

 
Nowadays the solution to the minimum surface problem is based on discrete numerical 
methods such as FEM and others. The constitutive problem of form finding for fabric tension 
structures on minimal surface basis is formulated in [3 - 6]. Some computer methods for 
computing the initial equilibrium shapes of tension structures are presented in these works. 
All methods use different large-displacement finite element formulations. The alternative 
approximated approach to the problem solution is based on the total energy balance of a 
nodal system as it is described in [7]. Due to its physical meaning this approach can be called 
the Stretched Grid Method (SGM). Usually, meteorologists use SGM for weather forecasting 
[8]. We use SGM to design tents and other tensile structures. The main idea of SGM is to 
obtain the total energy balance of grid-nodal structure. It allows substituting the complex 
solution of the non-linear FEM problem by very efficient linear SGM formulation.  
However, it seems necessary to consider the problem in more detail because there are some 
dubious points concerning the approach convergence and the mathematics proof. 
The approach described in [7] is based on the following function minimum finding 
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where n – total number of segments in the network, 
 Rj – the length of segment number j, 
 D – an arbitrary constant (does not influence the final result). 



 

As it is shown in [7] the applicability of eqn. (1) to minimal surface problem solution could be 
proved by the Heronian transformation for a single triangle in 3D space providing 
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where S - the area of one triangle, 

 ai - the length of triangle edge number i 
at any variable nodal vector x j . One can affirm that if vector x j  supplying the minimum to 

the function L is found, it will also give the minimum (or only stable state) to the function S . 

If we write further the total 3D surface area with a triangular grid as a sum of areas of all 
triangles  
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we may also notice here that the following expression is always true due to (2), i.e. 

 S . (4) 

Thus, as it was shown in [7] the minimum surface problem is focused on function (3) 
minimum finding and may be replaced by function (1) minimum problem solution. 
However, the sample presented in Fig.2 illustrates some discrepancies concerning the above 
proof. Let’s specify this problem. It is a non-planar rectangle simulated by four triangles.  
 

 
Figure 2. Outside the plane of a rectangular surface 

 
The boundary nodal co-ordinates are presented in table below  
The nodal co-ordinates 

Node X1 X2 X3 
1 0 0 0 
2 1 0 0 
3 1 1 1 
4 0 1 0 

When minimizing eqn. (1) one can find the following co-ordinates of node 5: X1=0.5, X2=0.5, 
X3=0.25. Taking into account these co-ordinates, we may calculate a total rectangular area as 
1.309017. On the other hand, using eqn. (3) we may calculate X1=0.500262, X2=0.500262, 
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X3=0.207376 with a total rectangular area 1.306563. It means functions (1) and (3) have their 

minima at different vectors 
j

x  and the conclusion made in [7] is either wrong or needs an 

additional proof aimed at finding any limitations of the described approach.  

3. Surface Area Calculation 
First of all, we need to prove that the area of the facet surface model converges to the area of a 
smooth surface due to the grid condensing. Let’s assume there is an arbitrary closed non-
plane contour bounding an arbitrary 3D surface. Assume further that the surface is 
approximated by a number of plane triangles so that their nodes are situated precisely on the 
surface. Let’s study a single triangle of such grid in more detail (see Fig.3).  
The reasoning described in this Section is a trial to evaluate the difference between areas of 
real and plane triangles. Let us assume that the difference can be expressed in the following 
way 

~
S − =   (5) 

where 
~
S - the area of real curved surface triangle, 

   - the area of plane triangle on the same nodal basis, 

   - the difference between areas. 
  

 
Figure 3. To area calculation element 

 
As shown in Fig 3 the local co-ordinate system u, v associated with the surface of plane 
triangle allows to write the following linear equations for triangle co-ordinates 

x x x x u x x vi i i i i i= + −  + − 3 1 3 2 3( ) ( )  (6) 

where xij - nodal co-ordinates of the plane triangle on axis i, 

 i =1,2,3 - number of axes, 
 j =1,2,3 - number of mangle node. 
However, using the form for finite increments we may write the equation of linear mapping 
for triangle points in the following way 
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where u0
 and v0

- mean derivatives at node number 3 (see Fig. 3).  
A non-linear mapping of a similar point within a curved triangle may be presented as  
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where i - non-linear residual of the mapping which is equal to 
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here u u u0  *
 and v v v u0 1  = −*

. 
Assuming that the first derivatives within triangle area are finite one can then affirm there is 
a positive arbitrary constant   which effects the following expressions 
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Taking into consideration eqn (9), we can limit a the non-linear part to the following 
inequality  

i <( ) u v+ <  P , (11) 

where  P is the plane triangle perimeter equal to L1+L2+L3 , i.e. the sum of its edges.  
Comparing further two linear mappings (6), (7) one can indicate the difference between them 
which depends on the differences of the first derivatives in node 3 only. It means that if there 

is a positive constant   then the following expression is true, i.e.  
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Taking into account (11) and (12), we can formulate the difference between non-linear 
mapping (8) and linear mapping (6) this way  
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where    +( )  

Thus, the distance between images of similar points within curved triangle and plane triangle 
is not more than some constant, i.e.  
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A careful analysis of exp (14) enables to affirm that the difference between areas of curved 

triangle and plane triangle   is not more than the area of some tape similar area with width 

3  P  that is situated around of the perimeter of plane triangle. The area of this area is not 
more than 
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It may be noted that   ratio depends only on the curvature of curved triangle and converges 
to zero as soon as curved triangle converges to the plane triangle. Taking into consideration 
the fact that the surface is approximated by the number of plane triangle elements, we may 
further write the following equation for the surface area  
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where  i - the area of a plane triangle number I,  

 n – the total number of plane triangles.  
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here k – a number of segments for the grid element i.  
Assuming that all i  factors are always  i   where   0  we may write 
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where  -ratio depends on the curvature of only the largest grid segment and converges to 
zero as soon as it becomes smaller, i.e.  
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In other words, refining the mesh so that to condense the grid cells one can converge the area 
of the poly-plane cellular structure to the exact surface area as close as possible. The next step 
is to prove that the functional grid area can be replaced by the functional sum of the whole 

grid segment length. Let’s further introduce the function 
=

=
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edge number j of a curved cell (see Fig.3) which is defined by the following expression (see 
works [9], [10]) 
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where E, F, G – metric ratios of the first surface quadratic form,  
 t – the 1D edge parameter of the triangle.  
One can notice the following obvious inequality 
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where m – the total number of grid edges.  
Taking into account the analysis of the mesh area convergence to the exact surface area, we 
can estimate the difference between the curved grid segment number j and its linear 
approximation as the following inequality similar to exp (15) 
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see how exp. (22) transforms into the following equality due to n →   and m→  , i.e. 
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Thus, due to (2) and (23) we can apply (1) to minimal surface form finding as accurate as the 
triangle grid is finely condensed. Besides, the expression (18) is very similar to (2) and it is 
the necessary condition for functional (1) applicability. 

4. Basic Minimum Surface Feature  
The preliminary notation 

In previous chapter we have showed that there are two functions   - the approximate surface 

area and 
=

m

j

jL
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2  - some function associated with a sum of the linear length of surface mesh 

segments. Both functions converge to stable values 
~
S  and 2~

L   simultaneously due to the 

mesh refinement to condense a grid cell. Obviously, function 2~
L  depends on only the surface 

of the first quadratic form. If 3D surface is bounded by a closed fixed contour and can be 



 

modified to converge to a surface with a minimum area, then such statement about 
2~

L  
feature is true as well. In this case, we can formulate the problem like this: what is the rule for 
the behavior of the first quadratic form surface due to the surface variation? It seems to be a 
basic feature of the minimum surfaces. If such feature is true, it serves as a clear proof of 
function (1) as a sufficient condition for minimal surface form finding. Now we can formulate 
the theorem.  
Theorem: 
If an arbitrary regular surface bounded by an arbitrary 3D closed fixed contour converges 
to the minimum area, then the first surface quadratic form converges at any surface point 
to the minimum as well.  
Proof  
Let us consider that an arbitrary regular surface is approximated by an arbitrary curved grid 
with infinite small cells and the surface together with all surface derivations are continuously 
independent on the surface deformation. In such a case we can insert a local surface FEM-
similar u, v parameterization as described in the previous chapter (see Fig. 3) and define the 
surface co-ordinates within any cell with the following functions determine surface 
coordinates in any cell using the following functions 

x X u v xi i i= ( , , ) ,  i=1,2,3 (24) 

where x i - some increment vector of nodal co-ordinates and can be various to get the 

minimum surface area,  
I – the number of co-ordinate axis. 
Let us assume further that there is some xo -increment vector of grid nodal co-ordinates, 

which provides the minimum for function 
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It is well- known that the surface area may be written as the following form (see [9], [10]) 
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One should indicate that the minimum condition (25) taking into account eqn. (26) leads the 
following local minimum condition for the area of infinitely small element at an arbitrary 
surface point  
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Considering that E, F, G are metric ratios that are expressed with the forms (see [9], [10])  
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we may write further three simultaneous minimum conditions on the basis of exp. (25) 
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One can note that the determinants within round brackets of conditions (29) are not close to 
zero at an arbitrary regular surface point simultaneously, i.e., an equation system  
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where aij – the expressions in quadrangular brackets of (29), 
 bi – the expressions in round brackets of (29), always receives a non-zero solution for 
vector b, 

always gets a non-zero solution with respect to vector b, only if det[ ]aij = 0 . Assuming that 

det[ ]aij = 0  is always true, we can write 
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One can indicate that (31) leads to the following most general condition, independent of the 
location of a surface point 
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If conditions (32) are always true at any/every surface point then the system of equations (29) 
always gets a non-zero solution and conditions (32) are sufficient and necessary for the 
system (29) to be correct.  
Let us transform the further system of equations (29) taking into account conditions (32). 
After all transformations we can figure out the following equation system equivalent to (29)  
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where E, F, G -the metric ratios of the surface of the first quadratic form as earlier. 
The functions in quadrangular brackets of (33) have no non-zero values simultaneously 
because a parameter of basis u, v is non-singular. Therefore, both equation systems (33) and 
(29) solution can be defined as the following equation system similar to (32) 
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This means that as soon as function 
~

( )S x  converges to minimum the first co-ordinate 

derivatives converge to minimum simultaneously at any surface point. 
The first surface quadratic form can be expressed by the following equation for an arbitrary 
curve arc differential at an arbitrary surface point [8], [9] The first surface quadratic form can 
be expressed by the following equation for an arbitrary curve arc differential at an arbitrary 
surface point [8], [9] 
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The local minimum conditions similar to (25) for function (35) can be written as the following 
three simultaneous equations 
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or in the vector form 
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It should be noted that three scalar products of the same vector 0r


d  with three different 

vectors
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vectors are situated at the same plane normally to vector 0r
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 However, the latter is impossible because the vector product does not always equal to zero if 

the derivation of the vectors are non-zero vectors or they are equal to zero simultaneously. On 

the other hand, three different derivation of the vectors 
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equal to zero only if system (34) is true. In fact, their components 
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are total differentials and always equal to zero if all local derivations are equal simultaneously 
to zero too due to arbitrary values of du  and dv . Therefore, we can obtain the same equation 
system (34). 

It means that the minimum condition of the first quadratic form (ds)2 is also equivalent to 

equation system (34) and both functions 
~

( )S x  and (ds)2 converge to their minima on the 

same incremental vector. Besides, one can also be convinced that vector xo  will obviously 

provide the minimum for E, F, G – metric ratios simultaneously at the same xo  -vector, i.e. 
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Thus, if the surface area near an arbitrary surface point converges to minimum then the first 
quadratic form near this point converges to minimum too because their minimum conditions 
are equivalent to equation system (34) for their finding minima. One can make the same 
conclusion at every regular surface point. So, we have proved the theorem. Actually, 
expression (39) is a sufficient condition for functional (1) applicability.  

5. Applications 
Now we are convinced that SGM allows minimizing the surface embedded into non-planed 
and planed, closed contours. From the physical point of view, this condition reflects the total 
energy balance of the nodal system.  
When designing the surface of the tent structure, it is vital to have it suspended on the special 
Frame object. Frame object is a set of spatial edges connected with each other. One can model 
edges by segments of straight lines or arcs of a circle. The Frame object is the basis for the 
tent cloth. The Frame edges and nodes should correspond to the tent cloth constrains. The 
system accepts topological triangles or as cloth preliminary patches [11].The algorithm for 
finding form of minimal and similar surfaces is implemented in the K3-Tent tensile fabric 
CAD system [12].The K3-Tent system allows a designer to choose the form-finding of tent 
structure of any complexity, supports the technology of its manufacture, including cutting 
pattern generation, setting of allowances for the pattern etc. The K3-Tent system is developed 
in C ++ language environment under Windows 10 OS and is a commercial product for small 
and medium-sized businesses.  
 The K3-Tent system allows the designer to choose the shape of the tent structure of any 
complexity, supports the technology of its manufacture, including the formation of a pattern, 
setting of allowances for the pattern, etc.  
 The Frame concept is widely used in the process for form finding tent structures. In Fig.4 one 
can see the surface of catenoid as an example of the developed approach.The two rings take 
on the role of the Frame to model the surface. The radii of the rings and the height of the 



 

catenoid are equal to 1.0. The numerical area of the catenoidal surface is equal to 
2,99671890145 (exact value is 2.992). 
 

 
Figure 4. Catenoidal surface 

 
The second problem is that of a helix surface (Fig. 5) between two concentric cylinders with a 
radii of 0.5 and 1.0 respectively and surface step H = 1.0. The numerical area is 2.41043 
(exact value 2.41062). 
 

 
Figure 5. Helix surface 

 



 

The following examples illustrate the form of the Hypar (Hyperbolic Parabolic) tent (see Fig. 
6) and tent roof of Entertainment Center (Fig. 7).  
 

 
Figure 6. Hyperbolic parabolic tent (Hypar) 

 

 
Figure 7. Roof of Entertainment Center 

6. Conclusion 
 Now we can make some conclusions, namely:  

 First, both functions 
~
S  and 

~
L  get the same minimum due to the surface variation because 

~
L  

-function is the sum of the integrals of the surface first quadratic form along the curved 

segments of mesh (as shown in Section 3). Thus, the minimum condition 0
)(
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replace by 0
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 condition, because it gives the same xo  -vector. As it is shown in [6], 

this permits obtaining a much easier solution.  

Second, if the surface mesh is fine enough to neglect the curvature of grid cells, then both 

conditions 0
)(
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 and 0
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. Here L  -function is identical to П-function (see eqn.(1)and [7]) ,respectively, due 

to eqns. (19), (23). If the mesh is not fine and differences 
~
S i

i

n

−
=
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1

 and 
~
L Lj j

2 2−  (see exp. 

(22)) cannot be neglected, all three functions (say 
~
S ,   и L - functions) have minima with 

different co-ordinate increments, and the technique described in [6] can be applied to 
minimum surface form finding, approximately due to very crude mesh. One can find the 
illustration of this case as a sample for the rectangular area in Fig.2. 

Third, the described technique is independent on the type of mesh, which can be as uniform 
as transient.  

And finally, the implemented algorithm based on the Stretched Grid Method automatically 
provides the optimal surface form, close to minimal area, without any folders, beads or 
plaiting etc.  
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